MIT 6006 Lecture 5——二叉查找树(Binary search tree, BST)

二叉查找树:左子节点小于根节点,右子节点大于根节点

跑道预留系统(Runway Reservation System)

让我们先从机场跑道预留系统作为引子,引入二叉查找树的概念。

问题定义

假设有一个机场只有一条跑道预留给飞机降落,这个系统有以下约束:

  • 预留的需求决定了降落时间$t$,$t$必须是未来的时间

  • 如果在$k$分钟内没有规划其他的降落请求,那么就将$t$加入集合$R$中。

  • 飞机降落后,将$t$从$R$中移出

  • 对于规模为$n$的$R$,我们希望上述操作时间复杂度为$O(\lg n)$

例子

假设降落规划的时间轴如上图,现在有三个规划请求,分别是在53、44和20秒降落,根据约束可知44和20是无效的请求。现在我们需要一个合适的数据结构描述规划。可选的数据结构包括:

  • 未排序的链表或数组:不符合时间复杂度,常规操作基本都是线性复杂度
  • 排序的数组:查找符合$O(\lg n)$的复杂度,但是插入的操作需要线性复杂度,因为需要移动
  • 排序的链表:链表做二分查找有难度
  • 堆:查找需要线性的时间,因为堆只提供了最大(最小)元素的$O(1)$时间查找

从上面的数据结构可以看出,它们或多或少都有一些问题,所以我们需要一个新的结构解决上述问题,即我们今天要介绍的BST。

二叉查找树(BST)

树的组成

一个简单的二叉查找树如下:

1
2
3
4
5
    5
/ \
2 6
/ \
1 3

树的组成为:

  • 节点$x$:key($x$)为该节点的值
  • 指针:parent($x$),left($x$),right($x$),parent指向节点$x$的父节点,left指向左子节点,right指向右子节点

性质

二叉查找树的最重要的性质为:对于所有节点$x$,$x$左子树的节点值小于等于$x$的值;$x$右子树的节点值大于等于$x$的值。根据这个特性,BST的中序遍历是一个有序数列

操作

插入删除

插入删除的时间复杂度取决于树的高度$h$,为$O(h)$。

寻找最小值find_min()

寻找最小值就是一路向左,寻找最大值就是一路向右,所以时间复杂度为$O(h)$。

寻找下一个较大的值next_larger(x)

时间复杂度也是$O(h)$

寻找比某个节点小的所有节点的个数rank(x)2

时间复杂度也是$O(h)$,这个过程分为三步:

  • 第一步寻找插入点
  • 第二步寻找过程中加上比该节点小的节点的个数
  • 第三步加入该节点的左子树的所有节点

树的增长与收缩

当插入或删除节点时,树会动态地调整大小,而我们也需要对树进行调整,从而使得树始终满足二叉搜索树的性质。我们有一个简单的二叉树如下:

其中节点右侧的数表示以该节点为根节点的树的规模。现在,我们要往树中插入新的节点43,我们需要从49开始,依次向下遍历,每经过一个节点,就将节点的规模+1,得到的新树如下所示:

BST实现

下面是一个使用java实现的BST:

点击显/隐内容
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/******************************************************************************
* Compilation: javac BST.java
* Execution: java BST
* Dependencies: StdIn.java StdOut.java Queue.java
* Data files: https://algs4.cs.princeton.edu/32bst/tinyST.txt
*
* A symbol table implemented with a binary search tree.
*
* % more tinyST.txt
* S E A R C H E X A M P L E
*
* % java BST < tinyST.txt
* A 8
* C 4
* E 12
* H 5
* L 11
* M 9
* P 10
* R 3
* S 0
* X 7
*
******************************************************************************/

import java.util.NoSuchElementException;

/**
* The {@code BST} class represents an ordered symbol table of generic
* key-value pairs.
* It supports the usual <em>put</em>, <em>get</em>, <em>contains</em>,
* <em>delete</em>, <em>size</em>, and <em>is-empty</em> methods.
* It also provides ordered methods for finding the <em>minimum</em>,
* <em>maximum</em>, <em>floor</em>, <em>select</em>, <em>ceiling</em>.
* It also provides a <em>keys</em> method for iterating over all of the keys.
* A symbol table implements the <em>associative array</em> abstraction:
* when associating a value with a key that is already in the symbol table,
* the convention is to replace the old value with the new value.
* Unlike {@link java.util.Map}, this class uses the convention that
* values cannot be {@code null}—setting the
* value associated with a key to {@code null} is equivalent to deleting the key
* from the symbol table.
* <p>
* It requires that
* the key type implements the {@code Comparable} interface and calls the
* {@code compareTo()} and method to compare two keys. It does not call either
* {@code equals()} or {@code hashCode()}.
* <p>
* This implementation uses an (unbalanced) <em>binary search tree</em>.
* The <em>put</em>, <em>contains</em>, <em>remove</em>, <em>minimum</em>,
* <em>maximum</em>, <em>ceiling</em>, <em>floor</em>, <em>select</em>, and
* <em>rank</em> operations each take &Theta;(<em>n</em>) time in the worst
* case, where <em>n</em> is the number of key-value pairs.
* The <em>size</em> and <em>is-empty</em> operations take &Theta;(1) time.
* The keys method takes &Theta;(<em>n</em>) time in the worst case.
* Construction takes &Theta;(1) time.
* <p>
* For alternative implementations of the symbol table API, see {@link ST},
* {@link BinarySearchST}, {@link SequentialSearchST}, {@link RedBlackBST},
* {@link SeparateChainingHashST}, and {@link LinearProbingHashST},
* For additional documentation, see
* <a href="https://algs4.cs.princeton.edu/32bst">Section 3.2</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class BST<Key extends Comparable<Key>, Value> {
private Node root; // root of BST

private class Node {
private Key key; // sorted by key
private Value val; // associated data
private Node left, right; // left and right subtrees
private int size; // number of nodes in subtree

public Node(Key key, Value val, int size) {
this.key = key;
this.val = val;
this.size = size;
}
}

/**
* Initializes an empty symbol table.
*/
public BST() {
}

/**
* Returns true if this symbol table is empty.
* @return {@code true} if this symbol table is empty; {@code false} otherwise
*/
public boolean isEmpty() {
return size() == 0;
}

/**
* Returns the number of key-value pairs in this symbol table.
* @return the number of key-value pairs in this symbol table
*/
public int size() {
return size(root);
}

// return number of key-value pairs in BST rooted at x
private int size(Node x) {
if (x == null) return 0;
else return x.size;
}

/**
* Does this symbol table contain the given key?
*
* @param key the key
* @return {@code true} if this symbol table contains {@code key} and
* {@code false} otherwise
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public boolean contains(Key key) {
if (key == null) throw new IllegalArgumentException("argument to contains() is null");
return get(key) != null;
}

/**
* Returns the value associated with the given key.
*
* @param key the key
* @return the value associated with the given key if the key is in the symbol table
* and {@code null} if the key is not in the symbol table
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public Value get(Key key) {
return get(root, key);
}

private Value get(Node x, Key key) {
if (key == null) throw new IllegalArgumentException("calls get() with a null key");
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp < 0) return get(x.left, key);
else if (cmp > 0) return get(x.right, key);
else return x.val;
}

/**
* Inserts the specified key-value pair into the symbol table, overwriting the old
* value with the new value if the symbol table already contains the specified key.
* Deletes the specified key (and its associated value) from this symbol table
* if the specified value is {@code null}.
*
* @param key the key
* @param val the value
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public void put(Key key, Value val) {
if (key == null) throw new IllegalArgumentException("calls put() with a null key");
if (val == null) {
delete(key);
return;
}
root = put(root, key, val);
assert check();
}

private Node put(Node x, Key key, Value val) {
if (x == null) return new Node(key, val, 1);
int cmp = key.compareTo(x.key);
if (cmp < 0) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, val);
else x.val = val;
x.size = 1 + size(x.left) + size(x.right);
return x;
}


/**
* Removes the smallest key and associated value from the symbol table.
*
* @throws NoSuchElementException if the symbol table is empty
*/
public void deleteMin() {
if (isEmpty()) throw new NoSuchElementException("Symbol table underflow");
root = deleteMin(root);
assert check();
}

private Node deleteMin(Node x) {
if (x.left == null) return x.right;
x.left = deleteMin(x.left);
x.size = size(x.left) + size(x.right) + 1;
return x;
}

/**
* Removes the largest key and associated value from the symbol table.
*
* @throws NoSuchElementException if the symbol table is empty
*/
public void deleteMax() {
if (isEmpty()) throw new NoSuchElementException("Symbol table underflow");
root = deleteMax(root);
assert check();
}

private Node deleteMax(Node x) {
if (x.right == null) return x.left;
x.right = deleteMax(x.right);
x.size = size(x.left) + size(x.right) + 1;
return x;
}

/**
* Removes the specified key and its associated value from this symbol table
* (if the key is in this symbol table).
*
* @param key the key
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public void delete(Key key) {
if (key == null) throw new IllegalArgumentException("calls delete() with a null key");
root = delete(root, key);
assert check();
}

private Node delete(Node x, Key key) {
if (x == null) return null;

int cmp = key.compareTo(x.key);
if (cmp < 0) x.left = delete(x.left, key);
else if (cmp > 0) x.right = delete(x.right, key);
else {
if (x.right == null) return x.left;
if (x.left == null) return x.right;
Node t = x;
x = min(t.right);
x.right = deleteMin(t.right);
x.left = t.left;
}
x.size = size(x.left) + size(x.right) + 1;
return x;
}


/**
* Returns the smallest key in the symbol table.
*
* @return the smallest key in the symbol table
* @throws NoSuchElementException if the symbol table is empty
*/
public Key min() {
if (isEmpty()) throw new NoSuchElementException("calls min() with empty symbol table");
return min(root).key;
}

private Node min(Node x) {
if (x.left == null) return x;
else return min(x.left);
}

/**
* Returns the largest key in the symbol table.
*
* @return the largest key in the symbol table
* @throws NoSuchElementException if the symbol table is empty
*/
public Key max() {
if (isEmpty()) throw new NoSuchElementException("calls max() with empty symbol table");
return max(root).key;
}

private Node max(Node x) {
if (x.right == null) return x;
else return max(x.right);
}

/**
* Returns the largest key in the symbol table less than or equal to {@code key}.
*
* @param key the key
* @return the largest key in the symbol table less than or equal to {@code key}
* @throws NoSuchElementException if there is no such key
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public Key floor(Key key) {
if (key == null) throw new IllegalArgumentException("argument to floor() is null");
if (isEmpty()) throw new NoSuchElementException("calls floor() with empty symbol table");
Node x = floor(root, key);
if (x == null) throw new NoSuchElementException("argument to floor() is too small");
else return x.key;
}

private Node floor(Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp == 0) return x;
if (cmp < 0) return floor(x.left, key);
Node t = floor(x.right, key);
if (t != null) return t;
else return x;
}

public Key floor2(Key key) {
Key x = floor2(root, key, null);
if (x == null) throw new NoSuchElementException("argument to floor() is too small");
else return x;

}

private Key floor2(Node x, Key key, Key best) {
if (x == null) return best;
int cmp = key.compareTo(x.key);
if (cmp < 0) return floor2(x.left, key, best);
else if (cmp > 0) return floor2(x.right, key, x.key);
else return x.key;
}

/**
* Returns the smallest key in the symbol table greater than or equal to {@code key}.
*
* @param key the key
* @return the smallest key in the symbol table greater than or equal to {@code key}
* @throws NoSuchElementException if there is no such key
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public Key ceiling(Key key) {
if (key == null) throw new IllegalArgumentException("argument to ceiling() is null");
if (isEmpty()) throw new NoSuchElementException("calls ceiling() with empty symbol table");
Node x = ceiling(root, key);
if (x == null) throw new NoSuchElementException("argument to floor() is too large");
else return x.key;
}

private Node ceiling(Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp == 0) return x;
if (cmp < 0) {
Node t = ceiling(x.left, key);
if (t != null) return t;
else return x;
}
return ceiling(x.right, key);
}

/**
* Return the key in the symbol table of a given {@code rank}.
* This key has the property that there are {@code rank} keys in
* the symbol table that are smaller. In other words, this key is the
* ({@code rank}+1)st smallest key in the symbol table.
*
* @param rank the order statistic
* @return the key in the symbol table of given {@code rank}
* @throws IllegalArgumentException unless {@code rank} is between 0 and
* <em>n</em>–1
*/
public Key select(int rank) {
if (rank < 0 || rank >= size()) {
throw new IllegalArgumentException("argument to select() is invalid: " + rank);
}
return select(root, rank);
}

// Return key in BST rooted at x of given rank.
// Precondition: rank is in legal range.
private Key select(Node x, int rank) {
if (x == null) return null;
int leftSize = size(x.left);
if (leftSize > rank) return select(x.left, rank);
else if (leftSize < rank) return select(x.right, rank - leftSize - 1);
else return x.key;
}

/**
* Return the number of keys in the symbol table strictly less than {@code key}.
*
* @param key the key
* @return the number of keys in the symbol table strictly less than {@code key}
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public int rank(Key key) {
if (key == null) throw new IllegalArgumentException("argument to rank() is null");
return rank(key, root);
}

// Number of keys in the subtree less than key.
private int rank(Key key, Node x) {
if (x == null) return 0;
int cmp = key.compareTo(x.key);
if (cmp < 0) return rank(key, x.left);
else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
else return size(x.left);
}

/**
* Returns all keys in the symbol table as an {@code Iterable}.
* To iterate over all of the keys in the symbol table named {@code st},
* use the foreach notation: {@code for (Key key : st.keys())}.
*
* @return all keys in the symbol table
*/
public Iterable<Key> keys() {
if (isEmpty()) return new Queue<Key>();
return keys(min(), max());
}

/**
* Returns all keys in the symbol table in the given range,
* as an {@code Iterable}.
*
* @param lo minimum endpoint
* @param hi maximum endpoint
* @return all keys in the symbol table between {@code lo}
* (inclusive) and {@code hi} (inclusive)
* @throws IllegalArgumentException if either {@code lo} or {@code hi}
* is {@code null}
*/
public Iterable<Key> keys(Key lo, Key hi) {
if (lo == null) throw new IllegalArgumentException("first argument to keys() is null");
if (hi == null) throw new IllegalArgumentException("second argument to keys() is null");

Queue<Key> queue = new Queue<Key>();
keys(root, queue, lo, hi);
return queue;
}

private void keys(Node x, Queue<Key> queue, Key lo, Key hi) {
if (x == null) return;
int cmplo = lo.compareTo(x.key);
int cmphi = hi.compareTo(x.key);
if (cmplo < 0) keys(x.left, queue, lo, hi);
if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);
if (cmphi > 0) keys(x.right, queue, lo, hi);
}

/**
* Returns the number of keys in the symbol table in the given range.
*
* @param lo minimum endpoint
* @param hi maximum endpoint
* @return the number of keys in the symbol table between {@code lo}
* (inclusive) and {@code hi} (inclusive)
* @throws IllegalArgumentException if either {@code lo} or {@code hi}
* is {@code null}
*/
public int size(Key lo, Key hi) {
if (lo == null) throw new IllegalArgumentException("first argument to size() is null");
if (hi == null) throw new IllegalArgumentException("second argument to size() is null");

if (lo.compareTo(hi) > 0) return 0;
if (contains(hi)) return rank(hi) - rank(lo) + 1;
else return rank(hi) - rank(lo);
}

/**
* Returns the height of the BST (for debugging).
*
* @return the height of the BST (a 1-node tree has height 0)
*/
public int height() {
return height(root);
}
private int height(Node x) {
if (x == null) return -1;
return 1 + Math.max(height(x.left), height(x.right));
}

/**
* Returns the keys in the BST in level order (for debugging).
*
* @return the keys in the BST in level order traversal
*/
public Iterable<Key> levelOrder() {
Queue<Key> keys = new Queue<Key>();
Queue<Node> queue = new Queue<Node>();
queue.enqueue(root);
while (!queue.isEmpty()) {
Node x = queue.dequeue();
if (x == null) continue;
keys.enqueue(x.key);
queue.enqueue(x.left);
queue.enqueue(x.right);
}
return keys;
}

/*************************************************************************
* Check integrity of BST data structure.
***************************************************************************/
private boolean check() {
if (!isBST()) StdOut.println("Not in symmetric order");
if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");
if (!isRankConsistent()) StdOut.println("Ranks not consistent");
return isBST() && isSizeConsistent() && isRankConsistent();
}

// does this binary tree satisfy symmetric order?
// Note: this test also ensures that data structure is a binary tree since order is strict
private boolean isBST() {
return isBST(root, null, null);
}

// is the tree rooted at x a BST with all keys strictly between min and max
// (if min or max is null, treat as empty constraint)
// Credit: Bob Dondero's elegant solution
private boolean isBST(Node x, Key min, Key max) {
if (x == null) return true;
if (min != null && x.key.compareTo(min) <= 0) return false;
if (max != null && x.key.compareTo(max) >= 0) return false;
return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
}

// are the size fields correct?
private boolean isSizeConsistent() { return isSizeConsistent(root); }
private boolean isSizeConsistent(Node x) {
if (x == null) return true;
if (x.size != size(x.left) + size(x.right) + 1) return false;
return isSizeConsistent(x.left) && isSizeConsistent(x.right);
}

// check that ranks are consistent
private boolean isRankConsistent() {
for (int i = 0; i < size(); i++)
if (i != rank(select(i))) return false;
for (Key key : keys())
if (key.compareTo(select(rank(key))) != 0) return false;
return true;
}


/**
* Unit tests the {@code BST} data type.
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
BST<String, Integer> st = new BST<String, Integer>();
for (int i = 0; !StdIn.isEmpty(); i++) {
String key = StdIn.readString();
st.put(key, i);
}

for (String s : st.levelOrder())
StdOut.println(s + " " + st.get(s));

StdOut.println();

for (String s : st.keys())
StdOut.println(s + " " + st.get(s));
}
}

参考文献

0%